Jumat, 19 Juli 2024

Implementasi Nilai-Nilai Islam dalam Lingkungan Sekolah

 

Implementasi Nilai-Nilai Islam dalam Lingkungan Sekolah

 

Deta Zahra Fauziah | 2201105008

Islam Disiplin Ilmu | 6B
Dosen Pengampu: Isnawati Nurul Azizah, M. Hum.

 

            Islam merupakan agama yang mengatur segala hal kehidupan demi kebaikan umatnya. Salah satu hal yang diwajibkan dalam Islam ialah menuntut ilmu. Ilmu dapat dicari dimana saja. Indonesia memfasilitasi warga negaranya menuntut ilmu dengan pendidikan formal, sehingga terdapat kalimat “sekolah merupakan tempat menuntut ilmu”. Selama menuntut ilmu di sekolah, tentu terdapat integrasi antara ilmu-ilmu pengetahuan hingga integrasi nilai-nilai agama dalam ilmu pengetahuan. Integrasi islam dalam ilmu pengetahuan sangat dibutuhkan karena Islam telah mengatur segala suatu dalam quran maupun hadits. Nilai-nilai Islam dapat pula diimplementasikan di lingkungan sekolah melalui kegiatan-kegiatan yang ada. Pada artikel ini akan dibahas bagaimana wujud implementasi nilai-nilai Islam di lingkungan sekolah.  

            Untuk mengetahui pengimplementasian nilai-nilai Islam di lingkungan sekolah, dilakukan observasi langsung dengan mewawancarai guru Pendidikan Agama Islam pada tiap sekolah. Observasi dilakukan di dua sekolah jenjang SMA/sederajat dengan, yaitu di SMA Negeri 13 Depok dan SMK HUTAMA Pondok Gede. Adapun pelaksanaan observasi di dua sekolah berbeda bertujuan untuk menganalisis bagaimana cara masing-masing sekolah mengimplementasikan nilai-nilai Islam dalam kegiatan/program yang dilaksanakan. Hasil observasi yang dilakukan juga dipublikasi dalam video yang diunggah di YouTube dan dapat ditonton melalui tautan berikut (https://youtu.be/k4miwjwLxp4?si=7GHBYwZ8hYaWfJQS).

            Berdasar hasil wawancara bersama Pak Lisep Rohimat, S. Pd. I. selaku guru Pendidikan Agama Islam (PAI) di SMA Negeri 13 Depok, nilai-nilai Islam diterapkan sebagai kegiatan pembiasaan baik, di antaranya salat duha, tadarus quran, dan cleanish iqra. Salat duha dilakukan bergantian dan terjadwal dikarenakan fasilitas sekolah yang belum memadai untuk menampung semua peserta didik. Tadarus quran sempat dilakukan terjadwal seminggu sekali dengan target satu kelas membaca satu juz, akan tetapi kegiatan ini masih disesuaikan dengan jadwal dan kondisi lingkungan sekolah.

            Cleanish iqra merupakan salah satu program unggulan yang diselenggarakan oleh pihak sekolah untuk membantu peserta didik yang belum mampu membaca quran dengan lancar. Kegiatan ini sudah dilaksanakan cukup lama dan sempat terjeda selama masa pandemi Covid-19, namun saat ini sudah kembali dilakukan. Sasaran utama dari kegiatan cleanish iqra ini ialah peserta didik kelas 10 atau kelas 11 yang belum lancar bahkan belum bisa membaca quran. Kegiatan ini mulai dilaksanakan pada tiap semesternya, peserta didik akan melalui tes baca tulis quran terlebih dahulu oleh masing-masing guru PAI, jika terdapat peserta yang direkomendasikan untuk mengikuti cleanish iqra akan dibimbing secara berkala dengan harapan setelah menamati jenjang SMA peserta didik mampu membaca quran. Peserta didik yang mengikuti kegiatan ini tentu difasilitasi dan didukung penuh oleh pihak sekolah dengan menghadirkan pembimbing dari luar sekolah dan dilaksanakan seminggu sekali agar hasilnya lebih maksimal.

            Hadirnya kegiatan cleanish iqra ini mendapat respon bervariatif dari peserta didik, dimulai dari respon baik dan mengikuti kegiatan tersebut dengan sungguh-sungguh hingga terdapat peserta didik yang menolak mengikuti kegiatan tersebut. Pihak sekolah terus mengupayakan koordinasi dengan wali kelas dan orang tua dari peserta didik untuk mensupport anak-anaknya mengikuti kegiatan ini. Guru juga berkoordinasi langsung dengan peserta didik agar dapat mengikuti kegiatan ini dengan umpan balik mendapatkan nilai tambahan dalam mata pelajaran PAI bagi peserta didik yang mengikutinya.

            Tidak hanya itu, di SMA Negeri 13 Depok juga mengadakan kegiatan pengimplementasian nilai-nilai Islam di lingkungan sekolah yang dilaksanakan berdasarkan momentum, seperti Tahun Baru Islam (Muharam), Maulid Nabi, Isra Mi’raj, dan Pesantren Kilat.

            Observasi kedua dilakukan di SMK HUTAMA Pondok Gede dengan mewawancarai Ibu Sarah, guru Pendidikan Agama Islam (PAI) kelas 10 dan kelas 11. Meskipun sekolah umum, SMK HUTAMA Pondok Gede tetap menerapkan nilai-nilai Islam dalam kegiatan sekolah dan dilaksanakan secara rutin di hari Kamis dan Jum’at. Pada hari Kamis, peserta didik akan melaksanakan salat duha berjamaah diiringi dengan membaca quran dan ratib, dilaksanakan sebelum memulai pembelajaran. Di hari Jum’at peserta didik laki-laki melaksanakan Salat Jum’at di masjid sekolah sedangkan peserta didik perempuan mengikuti keputrian. Seperti yang disampaikan sebelumnya, SMK HUTAMA Pondok Gede adalah sekolah umum, sehingga respon peserta didik pada awalnya sedikit terpaksa dan menjadi terbiasa dengan upaya dari pihak sekolah.

            Pihak sekolah mengupayakan konsistensi tingkat partisipasi peserta didik dalam kegiatan dengan mengadakan absensi yang terdapat di meja piket sebagai tolak ukur, dengan tujuan membiasakan peserta didik disiplin dalam melaksanakan kewajibannya sebagai muslim. Absensi ini hanya disalurkan ke wali kelas, jika terdapat peserta didik yang terbilang jarang mengikuti kegiatan akan dinasihati dan dibimbing untuk mengikuti kegiatan tersebut. Respon orang tua mengenai kegiatan-kegiatan ini sangat baik, tidak sedikit orang tua yang menyampaikan kesan baik kepada pihak sekolah mengenai kebiasaan anaknya melaksanakan salat duha maupun hafalan surat walaupun hanya beberapa ayat. Adapun kegiatan keputrian yang dilaksanakan di sekolah ini tidak selalu mengenai ilmu-ilmu Islam saja, melainkan mencakup ilmu kehidupan, seperti ilmu seputar bumbu dapur, menjahit, dan lain sebagainya. Keputrian dipandu oleh guru perempuan yang telah diberi jadwal dan materi yang akan disampaikan nantinya. Jadi kegiatan ini jelas didukung oleh pihak sekolah karena melibatkan peran guru secara langsung. Apabila terdapat peserta didik yang tidak mengikuti kegiatan pembiasaan ini lebih dari tiga kali akan diberikan sanksi berupa hafalan surat oleh guru piket yang bertugas.

            Dari observasi yang telah dilakukan, dapat dianalisis bahwa pada tiap-tiap sekolah tentunya memiliki program pembiasaan terhadap nilai-nilai Islam yang bertujuan baik dan membantu peserta didik menjadi lebih disiplin dan taat sebagai seorang muslim. Kesamaan program yang dimiliki oleh kedua sekolah observasi ialah pembiasaan salat duha dan tadarus quran. Kegiatan ini merupakan salah satu kegiatan positif yang dapat membantu peserta didik lebih taat dan dekat kepada Allah SWT. Semua program pengimplementasian nilai-nilai Islam di sekolah harus terus didukung dan dikembangkan oleh seluruh pihak yang terlibat dalam dunia pendidikan karena menuntut ilmu haruslah seimbang duniawi dan akhirat. Semoga pihak sekolah dapat konsisten dalam menjaga motivasi peserta didik untuk terus mengikuti program ini. Semoga peserta didik dapat merasakan manfaat yang didapat dari program yang diikuti dan dapat terus menerapkannya dalam kehidupan sehari-harinya.

Senin, 01 April 2024

Ilmuwan Muslim Berpengaruh di Dunia

Abu Qasim Khalaf ibn al-Abbas az-Zahrawi (Al-Zahrawi)

Abu Qasim Khalaf ibn al-Abbas az-Zahrawi atau Al-Zahrawi sering dikenal sebagai Abulcasis pada bagian Barat merupakan salah satu ilmuwan muslim berpengaruh di dunia dalam bidang kedokteran pada masa Islam abad pertengahan.

Beliau lahir di kota Al-Zahra yang berjarak kurang lebih 9 km dari Cordoba, Spanyol pada tahun 936 M dan wafat di kota Cordoba pada 1013 M silam.

Beliau memiliki karya yang cukup terkenal, yaitu Al-Tasrif yang terdiri atas 30 jilid berisikan kumpulan praktik kedokteran termasuk mengenai gigi dan kelahiran anak. Dalam buku tersebut, Al-Zahrawi menjabarkan mengenai ilmu bedah, orthopedi, opththalmlogi, farmakologi, hingga kosmetik. Beberapa produk berkategorikan kosmetik seperti deodoran, hand lotion, hingga pewarna rambut yang masih berkembang hingga saai ini merupakan hasil karyanya. Oleh karena itu, buku ini sempat dijadikan sumber utama pengetahuan dalam bidang kedokteran di Eropa.

Tidak hanya itu, Al-Zahrawi juga telah menemukan 26 peralatan bedah yang menjadikannya sebagai pelopor bedah modern karena alat penemuannya masih dimanfaatkan hingga saat ini. Berikut ialah beberapa alat bedah penemuan Al-Zahrawi, yaitu catgut, pisau bedah, sendok bedah, retractor, pengait, surgical rod, specula, bone saw, plaster, dan lainnya.


Ibn al-Haitsam

Abu Ali al-Hasan bin al-Hasan bin al-Haitsam atau Ibnu al-Haitsam lahir pada tahun 965 M di Basrah. Beliau besar dan sempat mengabdi di daerah ia dilahirkan sebelum akhirnya memutuskan merantau ke Ahwaz dan Baghdad untuk mencapai cita-citanya.

Ibnu al-Haitsam merupakan seorang ilmuwan muslim yang gemar melakukan penyelidikan. Penyelidikan yang telah dilakukan menghasilkan data penting mengenai cahaya yang kemudian dijadikan referensi bagi ilmuwan Barat untuk mengembangkan hasil penyelidikan tersebut menjadi sebuah alat temuan. Hasil penyelidikannya ini ditulis ke dalam buku Light on Twiligh Phenomena yang sudah diterjemahkan ke dalam bahasa inggris.

Menurut Ibnu al-Haitsam, benda yang dilihat oleh mata akan memantulkan cahayanya ke mata manusia. Hal ini bertolak belakang dengan teori Ptolomy dan Euclid yang menyebutkan bahwa manusia dapat melihat benda melalui pancaran cahaya yang keluar dari matanya. Beliau membuktikan penyelidikannya dengan membuat cermin kanta cekung dan cembung serta menggunakan teori biasan cahaya berupa segi empat roadmap pada pemukaan biasan. Dengan penelitiannya ini lah yang mengantarkan beliau mendapat julukan “Bapak Optika Modern” karenanya optika mengalami kemajuan yang pesat hingga saat ini.

Pemikiran Ibnu al-Haitsam memberikan banyak pengaruh kepada ilmuwan Barat melalui karya-karyanya yang diterjemahkan dalam bahasa latin. Adapun beberapa karyanya pada bidang optika sebagai berikut:

1.  Risalah Fi Al-Ain Wa Al-Abshar

2.  Risalah Fi Al-Maraya Al-Muhriqah Bi Ad-Dawa'ir

3.  Risalah Fi In'ithaf Adh-Dhau

4.  Risalah Fi Al-Maraya Al-Muhriqah Bi Al-Quthu

5.  Kitab Fi Al-Halah Wa Qaus Qazah


Abu Bakar Ar-Razi

Abu Bakar Muhammad bin Zakaria ar-Razi atau Abu Bakar Ar-Razi merupakan seorang ilmuwan muslim yang lahir pada 685 M di Rayy, Teheran. Sejak muda, ia telah mempelajari berbagai bidang ilmu, termasuk bidang ilmu kesehatan dan kedokteran hingga ia memimpin Rumah Sakit Muqtadari di Baghdad.

Motivasi beliau untuk mempelajari ilmu kedokteran disebabkan ia mengalami insiden yang mengakibatkan matanya menjadi cacat. Sejak itu, ia mencoba untuk mempelajari ilmu kedokteran dari Ali Ibnu Sahal at-Tabari.

Sebagai seorang dokter utama di rumah sakit yang ia pimpin, Abu Bakar Ar-Razi merupakan orang pertama yang memberikan penjelasan mengenai penyakit cacar, dimulai dari definisi, gejala, penyebab, hingga penyembuhannya. Pembahasan mengenai cacar ini kemudian dibukukan dalam Al-Judari wal-Hasbah (Cacar dan Campak). Tidak hanya itu, Abu Bakar Ar-Razi juga dikenal sebagai ilmuwan yang menemukan penyakit alergi asma dan juga rhintis setelah menyium bunga mawar.

Adapun selama hidupnya, beliau merupakan seorang dokter yang tidak memberatkan biaya kepada pasiennya karena tujuannya menjadi dokter ialah untuk berbuat baik. Berikut terdapat beberapa karya Abu bakar Ar-Razi dalam bidang kedokteran yang dibukukan:

1.  Hidup yang Luhur
2.  Petunjuk Kedokteran untuk Masyarakat Umum
3.  Keraguan pada Galen
4.  Penyakit pada Anak

Minggu, 30 Juli 2023

Artikel

Meningkatkan Pemahaman Kosakata Matematika Pada
Peserta Didik SMP/MTs dengan Literasi Matematika


Proses Berpikir Matematika


Logika Matematika 3


I. Ekuivalen dalam matematika

II. Silogisme

III. Dilemma

Dilemma merupakan bagian dari silogisme yang terdiri atas dua premis yang serba salah. Dilemma adalah sebuah argumentasi atau himpunan premis-premis, dimana premis mayornya terdiri dari dua pernyataan dan premis minornya ialah pernyataan disjungtif. Konklusi dari dilemma berupa konsekuensi dari premis-premis yang saling berkontradiksi/tidak dikehendaki. Dilemma sendiri dibedakan menjadi dua jenis, yaitu:

  • Dilemma konstruktif

Dilemma konstruktif merupakan kombinasi dari dua pernyataan berbentuk modus ponen.


  • Dilemma destruktif

Dilemma destruktif merupakan kombinasi dari dua pernyataan berbentuk modus tollens.


Dari pembahasan di atas, maka dapat ditarik kesimpulan bahwasanya dalam logika matematika pun terdapat ekuivalensi/kesetaraan antar pernyataan yang sudah diatur dalam hukum-hukum terkait.

Di logika matematika pun terdapat beberapa cara untuk menarik sebuah kesimpulan, di antaranya silogisme dan dilemma. Silogisme ialah cara penarikan kesimpulan yang menggunakan cara berpikir deduktif, yaitu dari khusus ke umum. Silogisme ini membutuhkan dua buah premis untuk mengambil suatu kesimpulan yang bernilai benar. Silogisme terbagi menjadi beberapa jenis, yaitu silogisme kategorik, silogisme hipotetik, silogisme alternatif, entimen, dan silogisme disjungtif.

Sedangkan dilemma merupakan bagian dari silogisme yang cukup rumit karena premis mayornya terdiri atas dua buah pernyataan. Kesimpulan dari dilemma juga berupa konsekuensi yang tidak dikehendaki. Dilemma dibedakan menjadi dua berdasarkan jenis premis mayornya. Dilemma konstruktif berarti premis mayornya mengandung dua buah modus ponens, sedangkan dilemma destruktif mengandung modus tollens dalam premis mayornya.

Proses Berpikir Matematika


Logika Matematika 2


I. Ekuivalen dalam logika matematika

II. Silogisme

Silogisme merupakan bagian paling penting dalam ilmu logika. Silogisme termasuk ke dalam cara berpikir deduktif, yaitu mengambil kesimpulan khusus dari kesimpulan umum. Silogisme terdiri atas dua pernyataan untuk memperoleh kesimpulan sebagai pernyataan ketiganya. Kedua pernyataan disebut dengan premis, sedangkan pernyataan ketiga berupa kesimpulan yang disebut konklusi.

Kedua premis yang mendukungnya bernilai benar, maka dapat dipastikan bahwa kesimpulan yang dihasilkan juga bernilai benar. Dua premis ini dibedakan menjadi premis mayor dan minor. Premis mayor ialah premis yang bersifat umum dan dapat dijadikan predikat. Sedangkan premis minor ialah premis yang menjadi subjek dan bersifat khusus.

Silogisme dibedakan menjadi beberapa macam, di antaranya:

  • Silogisme kategorik

Silogisme kategorik ialah silogisme yang semua pernyataannya ialah pertnyataan kategorik. Silogisme kategorik merupakan pernyataan deklaratif yang dibuat atas tiga pernyataan yang masing-masingnya disebutkan dua kali.

Contoh:

Lumba-lumba adalah hewan mamalia.                             (Premis mayor)

Semua hewan mamalia adalah hewan berdarah panas.    (Premis minor)

Lumba-lumba adalah hewan berdarah panas.                   (Konklusi)

        

  • Silogisme hipotetik

Silogisme hipotetik ialah silogisme yang premisnya berupa pernyataan bersyarat. Premis mayor pada silogisme merupakan pernyataan hipotetik, sedangkan premis minornya merupakan pernyataan kategorik.

Contoh:

Jika hujan, maka saya memakai payung.   (Premis mayor)

Sekarang hujan.                                         (Premis minor)

Jadi saya memakai payung.                      (Konklusi)

       

  • Silogisme alternatif

Silogisme alternatif adalah jenis silogisme yang menggunakan disjungsi sebagai premis mayornya. Premis mayor ini berupa pernyataan alternatif. Pernyataan alternatif ialah bila premis minornya membenarkan salah satu alternatifnya. Kesimpulan dari silogisme alternatif akan menolak alternatif lainnya.

Contoh:

Nenek memasak ayam atau bebek.           (Premis mayor)

Nenek memasak ayam.                             (Premis minor)

Jadi, Nenek tidak memasak bebek.          (Konklusi)

       

  • Entimen

Entimen ialah bentuk silogisme yang hanya terdapat premis minor dan konklusi. Silogisme jenis ini jarang ditemukan dalam kehidupan sehari-hari kita.

Contoh:

Ia telah menerima hadiah pertama karena ia menang dalam sayembara itu.

  • Silogisme disjungtif

Silogisme disjungtif adalah silogisme yang premis mayornya menggunakan disjungtif. Sedangkan premis minornya bersifat kategorik yang merupakan ingkaran dari salah satu kemungkinan yang disebut dalam premis mayor. Kesimpulan silogisme disjungtif dapat mengandung kemungkinan lain.

Contoh:

Hasan berkata jujur atau berbohong.                  (Premis mayor)

Hasan tidak mengatakan yang sejujurnya.         (Premis minor)

Hasan berkata bohong.                                      (Konklusi)


Hasan berkata jujur atau berbohong.                  (Premis mayor)

Hasan tidak berkata bohong.                              (Premis minor)

Hasan berkata jujur.                                           (Konklusi)

       



Proses Berpikir Matematika

 

Logika Matematika 1


Logika matematika sering kali digunakan dalam kehidupan sehari-hari. Implementasi logika matematika dapat dilihat melalui perkataan yang biasa disebut dengan sebuah pernyataan. Dalam sebuah pernyataan yang diucapkan, tentulah memiliki suatu kesimpulan. Kesimpulan ini juga termasuk ke dalam cakupan logika matematika. Di dalam logika matematika, bagaiman cara untuk menarik kesimpulan pun dipelajari. Terdapat beberapa cara untuk menarik sebuah kesimpulan, diantaranya menggunakan modus ponens, modus tollens, silogisme, dan juga dilemma. Pada penulisan laman kali ini difokuskan kepada ekuivalensi dalam logika matematika, silogisme dan dilemma yang akan dibahas pada laman berikutnya, dimana keduanya merupakan sama-sama membahas mengenai penarikan kesimpulan dengan syarat membutuhkan dua buah pernyataan atau lebih. 


I. Ekuivalen dalam logika matematika

Secara umum, ekuivalen dapat diartikan suatu hal memiliki nilai yang sama dengan pembandingnya. Dalam logika matematika, dikenal konsep ekuivalen atau kesetaraan untuk menyatakan hubungan antar pernyataan. Biasanya, dua buah pernyataan dapat dikatakan ekuivalen jika keduanya memiliki nilai kebenaran yang sama untuk setiap barisnya pada tabel kebenaran.

Terdapat beberapa kaidah mengenai ekuivalen dalam logika matematika, yaitu:

Dari beberapa kaidah tersebut, jika dibuktikan dengan menggunakan tabel kebenaran maka hasil akhirnya akan bernilai ekuivalen. Kemudian, untuk memahami lebih lanjut berikut disajikan soal dan pembahasan mengenai ekuivalensi logika matematika.







Proses Berpikir Matematika

 

Pembuktian Langsung


Dalam proses belajar mahasiswa berpikir untuk mendapatkan suatu pengetahuan, yang nantinya akan digunakan untuk mempelajari hal-hal yang baru. Salah satu faktor pengganggu proses belajar mahasiswa ialah kurangnya pengetahuan dan keterampilan prasyarat. Semakin banyak latar belakang pengetahuan yang disediakan, maka semakin baik dan cepat pembelajaran tersebut terjadi. Dalam memperoleh pengetahuan dan suatu keterampilan itu sendiri diperlukan suatu kemampuan dalam berpikir. Kemampuan dalam berpikir dan mengontrol setiap proses berpikir yang dilakukan untuk meningkatkan proses belajar itu sendiri merupakan metakognisi.

 

Masalah pembuktian matematika dimana tujuannya sudah ditentukan, tetapi langkah-langkah dalam membuktikan tersebut yang perlu di manipulasi atau di konstruksi oleh mahasiswa sesuai pemilihan strategi penyelesaian yang digunakan, pelaksanaan setiap langkah penyelesaian dan mengevaluasi setiap proses tersebut, sehingga menghasilkan langkah-langkah yang benar serta menghasilkan kesimpulan bahwa suatu pernyataan tersebut benar adanya. Dalam mengkonstruksi pembuktian, mahasiswa dapat menggunakan metode pembuktian matematika dikelompokkan menjadi pembuktian langsung dan pembuktian tidak langsung.

 

Pada makalah ini, kami akan dibahas soal dengan penyelesaian pembuktian langsung. Pembuktian langsung merupakan suatu metode pembuktian teorema yang berbentuk implikasi Þ q. Pembuktian langsung dapat diselesaikan dengan tabel atau penulisan formal.


Pembuktian langsung merupakan salah satu bagian dari pembuktian dalam matematika. Bukti sendiri memiliki pengertian serangkaian argumen logis yang menjelaskan kebenaran atas suatu pernyataan.

 

Terdapat tiga unsur dalam pembuktian matematika, yaitu:

  • Aksioma, merupakan sebuah pernyataan yang sudah pasti kebenarannya dan bersifat umum. Contohnya ialah rumus matematika yang digunakan di seluruh bagian dunia.
  • Defisini, merupakan pernyataan terkait suatu konsep tertentu yang merupakan hasil dari kesepakatan bersama. Seperti definisi dari garis atau lainnya.
  • Teorema, merupakan pernyataan yang kebenarannya dapat dibuktikan melalui sebuah pembuktian. Teorema yang sudah dibuktikan salah satunya ialah teorema pythagoras.

Ketiga unsur tesebut sangatlah berkaitan dengan materi pembuktian matematika. Pembuktian langsung merupakan sebuah teorema yang berbentuk implikasi (Þ q) dimana p berperan sebagai hipotesis dan q merupakan sebuah kesimpulan.

Dalam membuktikan sebuah pembuktian, dapat digunakan dua metode, yaitu metode tabel pembuktian dan penulisan formal pembuktian (formal writing). Untuk mengetahui seperti apa dan bagaimana cara melakukan pembuktian langsung dapat dilihat pada latihan soal di subbab berikutnya.

Contoh soal:

Buktikan dengan menggunakan tabel dan penulisan formal pembuktian untuk proposisi berikut “Jika suatu bilangan bulat n adalah genap, maka 2n3 + n habis dibagi 3”.

a. Tabel pembuktian

Jika suatu bilangan bulat n adalah genap, maka 2n3 + n habis dibagi 3

 Hipotesis: Bilangan bulat n adalah genap

Kesimpulan: 2n3 + n habis dibagi 3


b. Penulisan formal (formal writing)

Penyelesaian:

Kita asumsikan bilangan bulat n adalah genap dan akan dibuktikan bahwa 2n3 + n habis dibagi 3.

Karena n adalah bilangan bulat genap, maka n = 2x.

Gunakan aljabar, diperoleh:



Selama n adalah bilangan bulat genap dan tidak berlaku sifat tertutup untuk operasi pembagian, maka harus dibuktikan bahwa seluruh elemen pembilang dapat dibagi habis oleh 3. Akan tetapi, pada operasi tersebut semua pembilang tidak dapat habis dibagi 3, sehingga kesimpulan bahwa 2n3 + n habis dibagi 3 tidak terbukti.


Demikianlah yang dapat disajikan pada makalah ini. Sehingga dapat ditarik simpulan bahwa pembuktian merupakan serangkaian proses yang menjelaskan kebenaran suatu pernyataan menggunakan argumen dan tahapan yang logis. Terdapat tiga unsur dalam pembuktian, yaitu aksioma, definisi, dan teorema. Sedang pembuktian matematika sendiri dibedakan menjadi pembuktian langsung dan tidak langsung. Pembuktian lansgung merupakan sebuah teorema yang berbentuk implikasi. Metode pembuktian lansgung ialah tabel pembuktian dan penulisan formal pembuktian.


Pembuktian kontradiksi



Implementasi Nilai-Nilai Islam dalam Lingkungan Sekolah

  Implementasi Nilai-Nilai Islam dalam Lingkungan Sekolah   Deta Zahra Fauziah | 2201105008 Islam Disiplin Ilmu | 6B Dosen Pengampu: ...